Parametric invariant random matrix model and the emergence of multifractality.

نویسندگان

  • J A Méndez-Bermúdez
  • Tsampikos Kottos
  • Doron Cohen
چکیده

We propose a random matrix modeling for the parametric evolution of eigenstates. The model is inspired by a large class of quantized chaotic systems. Its unique feature is having parametric invariance while still possessing the nonperturbative breakdown that had been discussed by Wigner 50 years ago. Of particular interest is the emergence of an additional crossover to multifractality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

Parametric Technology Display and Matemhtical Model Of Technology Spillover

In this paper, parametric technology display and a mathematical model of technology spillover as a different approach based on the technology changes would be discussed. The recently action that will be accomplished through formation matrices of technological changes, measure of technology spillover and other concepts along with a variety of matrices types. Several examples are given and the re...

متن کامل

Multifractal dimensions for all moments for certain critical random-matrix ensembles in the strong multifractality regime.

We construct perturbation series for the qth moment of eigenfunctions of various critical random-matrix ensembles in the strong multifractality regime close to localization. Contrary to previous investigations, our results are valid in the region q<1/2. Our findings allow one to verify, at first leading orders in the strong multifractality limit, the symmetry relation for anomalous fractal dime...

متن کامل

Multifractality of the Feigenbaum attractor and fractional derivatives

It is shown that fractional derivatives of the (integrated) invariant measure of the Feigenbaum map at the onset of chaos have power-law tails in their cumulative distributions, whose exponents can be related to the spectrum of singularities f(α). This is a new way of characterizing multifractality in dynamical systems, so far applied only to multifractal random functions (Frisch and Matsumoto ...

متن کامل

Invariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family

Based on a given Bayesian model of multivariate normal with  known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e.  conditional and unconditional empirical Bayes confidence interval), the empiri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006